Search results for "Soft materials"
showing 10 items of 13 documents
Latvian-Brazilian meeting on Active and Soft Matter Physics: Book of Abstracts, Thursday, 3 February 2022, 15:00, Online
2022
This abstract book is made for the Latvian-Brazilian meeting on Active and Soft Matter Physics, held on February 3, 2022. It was organized by the MMML lab (Lab of Magnetic Soft Materials) of the University of Latvia together with the Condensed Matter Physics Group of the Federal University of Ceará (Fortaleza, Brazil) as a part of the 80th International Scientific Conference of the University of Latvia. It includes topical contributions from researchers working on active and soft matter physics at both research groups.
Unraveling modular microswimmers: From self-assembly to ion-exchange-driven motors
2018
Active systems contain self-propelled particles and can spontaneously self-organize into patterns making them attractive candidates for the self-assembly of smart soft materials. One key limitation of our present understanding of these materials hinges on the complexity of the microscopic mechanisms driving its components forward. Here, by combining experiments, analytical theory, and simulations we explore such a mechanism for a class of active system, modular microswimmers, which self-assemble from colloids and ion-exchange resins on charged substrates. Our results unveil the self-assembly processes and the working mechanism of the ion-exchange driven motors underlying modular microswimme…
Supramolecular Eutecto Gels: Fully Natural Soft Materials
2018
The obtainment of materials featured by high environmental compatibility is one of the main goals of modern research. On this subject, we herein report the first example of supramolecular gel in deep eutectic solvents. In particular, we prepared gels of the L-amino acids isoleucine and tryptophan in choline chloride/phenylacetic acid 1:2. All gel components are readily available and nontoxic. Gels have been fully characterized by standard gelation tests, rheology, X-ray diffraction, morphology and gelation kinetics. Data collected show that gels properties depend on the gelator nature. In particular, gel phases exhibit strong colloidal forces and, this high mechanical resistance, together w…
Halogen Bonding beyond Crystals in Materials Science
2019
Halogen bonding has recently gained well deserved attention in present-day research for its importance in many fields of supramolecular science and crystal engineering. Although generally overlooked in comprehensive studies in the past, halogen bonding has become an important tool also in the field of materials science. An increased number of scientific reports are published every year where halogen bonding is exploited in soft materials rather than in crystal engineering. Here, we focus on a description of the most exciting contemporary developments in the field of halogen-bonded functional soft materials, assembled using the guiding principles of crystal engineering. We give a particular …
Scattering perspectives on nanostructural inhomogeneity in polymer network gels
2017
Abstract Scattering methods based on spatial and temporal contrast fluctuations in polymer-network gels, which originate from polymer-segmental density fluctuations, reveal rich insight into different types and levels of nanostructural inhomogeneity in these soft materials. Complementary contrasting as provided by light, neutron, and X-ray scattering allows such information to be obtained on nano- to micrometer length scales. On top of that, complementary use of static and dynamic scattering methods allows the interplay and effect of these inhomogeneities to be unraveled. This article interrelates a multitude of studies on the application of scattering techniques for analytical assessment o…
Organic salts and aromatic substrates in two-component gel phase formation: the study of properties and release processes
2015
To identify gel phases able to act as confined reaction media or materials for the removal of organic pollutants, we studied two-component gel phases formed by naphthalenedisulfonate diimidazolium salts in the presence of some organic guests, in 1-propanol solution. Guests differing in π-surface area, bulkiness and electronic properties were taken into account. Soft materials obtained were investigated for their thermal stability, self-repairing ability and morphology. Furthermore, two-component gel phase formation was studied using resonance light scattering (RLS) measurements. Guest release processes from the gel phase were also studied. These processes were monitored as a function of tim…
Modeling hydrodynamic interactions in soft materials with multiparticle collision dynamics
2019
Multiparticle collision dynamics (MPCD) is a flexible and robust mesoscale computational technique for simulating solvent-mediated hydrodynamic interactions in soft materials. Here, we provide a critical overview of the MPCD method and summarize its current strengths and limitations. The capabilities of the method are highlighted by reviewing its recent applications to simulate diverse phenomena, ranging from the flow of complex fluids and thermo-osmotic transport to bacterial swimming and active particle self-assembly. We also discuss outstanding challenges and emerging methodological developments that are expected to greatly expand the applicability of MPCD to other systems of technologic…
Rapid Self-Healing and Thixotropic Organogelation of Amphiphilic Oleanolic Acid–Spermine Conjugates
2021
Natural and abundant plant triterpenoids are attractive starting materials for the synthesis of conformationally rigid and chiral building blocks for functional soft materials. Here, we report the rational design of three oleanolic acid-triazole-spermine conjugates, containing either one or two spermine units in the target molecules, using the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction. The resulting amphiphile-like molecules 2 and 3, bearing just one spermine unit in the respective molecules, self-assemble into highly entangled fibrous networks leading to gelation at a concentration as low as 0.5% in alcoholic solvents. Using step-strain rheological measurements, we show ra…
Photoinduced mass transport in soft materials
2011
The surface relief grating formation in amorphous As2S3 and azo-benzene polymer films strongly depends on the polarization state of recording beams. The surface relief grating formation efficiency of s-s and p-p recording beam combination can be essentially enhanced by additional illumination with orthogonal polarization. It is shown that the direction of mass transport on the film surface is determined by the direction of light electric vector.